pad_int
fills the gaps in incomplete integer variables. It will insert
a record for each of the missing value. For all
other variables in the data frame a missing value will be inserted at the
padded rows.
pad_int(x, by, start_val = NULL, end_val = NULL, group = NULL, step = 1)
x | A data frame. |
---|---|
by | The column to be padded. |
start_val | The first value of the returned variable. If NULL it will use the lowest value of the input variable. |
end_val | The last value of the returned variable. If NULL it will use the highest value of the input variable. |
group | Optional character vector that specifies the grouping variable(s). Padding will take place within the different group values. |
step | The step size of the returned variable. |
The data frame x
with the specified variable padded. All
non-grouping variables in the data frame will have missing values at the rows
that are padded.
#> x val #> 1 2005 3 #> 2 2006 NA #> 3 2007 2 #> 4 2008 6 #> 5 2009 NA #> 6 2010 NA #> 7 2011 3pad_int(int_df, 'x', start_val = 2006, end_val = 2013)#> x val #> 1 2006 NA #> 2 2007 2 #> 3 2008 6 #> 4 2009 NA #> 5 2010 NA #> 6 2011 3 #> 7 2012 NA #> 8 2013 NA#> x val #> 1 2005 3 #> 2 2007 NA #> 3 2009 NA #> 4 2011 NA #> 5 2013 NA #> 6 2015 4pad_int(int_df2, 'x', step = 5)#> x val #> 1 2005 3 #> 2 2010 NA #> 3 2015 4int_df3 <- data.frame(x = c(2005, 2006, 2008, 2006, 2007, 2009), g = rep(LETTERS[1:2], each = 3), val = c(6, 6, 3, 5, 4, 3)) pad_int(int_df3, 'x', group = 'g')#> x g val #> 1 2005 A 6 #> 2 2006 A 6 #> 3 2007 A NA #> 4 2008 A 3 #> 5 2006 B 5 #> 6 2007 B 4 #> 7 2008 B NA #> 8 2009 B 3pad_int(int_df3, 'x', group = 'g', start_val = 2005, end_val = 2009)#> x g val #> 1 2005 A 6 #> 2 2006 A 6 #> 3 2007 A NA #> 4 2008 A 3 #> 5 2009 A NA #> 6 2005 B NA #> 7 2006 B 5 #> 8 2007 B 4 #> 9 2008 B NA #> 10 2009 B 3